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SUMMARY

This report represents a summary of the main results obtained within
the third year(2008-09) of a three year research project(0607,0708,0809) in
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NASA’s AISR program, Science Mission Directorate, with grant number
NNG06GG55G. The main goal for this research is to find ways for space-
craft to remain in orbit about a planet for extended periods of time, moving
in a more flexible manner and performing maneuvers using substantially less
fuel than by standard methods. This would provide more flexible maneuver-
ing and a way to extend mission duration and therefore data collection. The
methodology utilizes very sensitive motion for spacecraft that occurs about
planetary bodies when the velocity is suitably adjusted to special values. The
region supporting this sensitive motion is called a weak stability boundary.
Although the resulting motion is unstable in such circumstances, the insta-
bility itself is used to reduce the fuel (or equivalently the change in velocity,
DV) to change the orbital motion.

The weak stability boundary was first estimated in 1986 by this researcher
[1, 2], and it is a complicated region defined in position-velocity space. It
was first defined about the Moon, which we consider here. The structure of
this region has not been understood since then, and there have been some
results shedding light on its nature. Earlier work done by this researcher in
1990 indicated that the motion associated with this region was both unstable,
chaotic in nature. It also had the property that trajectories which emanated
from this boundary, and which escaped the Moon, would move in an elliptic-
type orbit about the Earth that was in resonance with the Moon. Also,
subsequent encounters with the boundary by a trajectory would cause the
trajectory to abruptly jump to different resonance motions. These properties
of the weak stability boundary made it clear that its mathematical structure
was very complicated. Although it is not understood at this time, the work
performed thus far in this project has helped shed a lot of light on the nature
of this region. The first two years of this project were more focused on the
resonance dynamics. These results are summarized in previous reports, [3, 4].
The details of these results are published in [5].

This report summarizes new results which open the door to understanding
this region for the first time and are very intriguing. A key insight is some
interesting work by F. Garcia and G. Gomez [10] in 2007. They demonstrated
that the definition of the weak stability boundary about the Moon could be
generalized. The initial definition of this region by Belbruno made use of
monitoring the stability of a trajectory about the Moon after 1 cycle. Garcia
and Gomez suggested that this be generalized to n-cycles, n = 1, 2, 3, .... This
gives rise to the nth weak stability boundary. The general boundary is then
obtained by taking a union of these n boundaries. This generalized boundary
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can then be visualized and it has an interesting fractal appearance. This work
was studied further in [12] and is the subject of this report. The generalized
boundary is visualized for different parameter values. It is conjectured, but
not demonstrated in [12], that the generalized weak stability boundary may
be related to a special set, which is the limit set resulting from the invariant
manifolds of the Lyapunov orbits associated to L1, L2 near the Moon. More
precisely, this limit set may actually be equivalent to the weak stability for
certain parameter values. If true, that would be a surprising result and
provide a new approach to studying such limit sets in general. It would also
provide the first precise description of the structure this region. In this way,
this boundary provides a straight forward way of using local information to
estimate a complicated global limit set that would normally require extensive
numerical computation, promising a number of applications to mission design
and dynamical astronomy.

1. INTRODUCTION

The search for a new type of transfer from the Earth to the Moon for
spacecraft in 1986 led to the discovery of an interesting region of unstable
motion about the Moon [2]. The motivation was to find a way for a spacecraft
to arrive near the Moon with a substantially reduced relative velocity as com-
pared to the standard Hohmann transfer. A Hohmann transfer approaches
the Moon with a relative velocity of approximately 1 km/s, resulting in a sig-
nificant amount of fuel being required to slow down and go into lunar orbit.
It was desired to reduce the approach velocity to 0 km/s. This is called bal-
listic capture. Although such a capture was conjectured in the 1960’s by C.
Conley [2, 9] in the three-body problem between the Earth-Moon-spacecraft
for transfers starting from arbitrarily near to the Earth to near the Moon, it
had never been demonstrated. It was suggested from Conley’s work that the
invariant manifold structure associated to the unstable collinear Lagrange
points L1, L2 near the Moon would have to somehow play a role, but this
was not understood.

A way to achieve ballistic capture was numerically demonstrated in 1986
for transfers starting sufficiently far from the Earth [1, 2]. The solution to this
problem, yielding a transfer to the Moon for a spacecraft using low thrust,
with a flight time of two years, utilizes a region about the Moon where the
stability of motion is in transition. This is where a particle, say a spacecraft,
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is in between capture and escape with respect to the Moon. The capture,
defined by a negative Kepler energy, is temporary, termed weak capture. The
region about the Moon where weak capture occurs is defined by the weak
stability boundary (WSB). It can be estimated by a numerical algorithm
which determines the transition between ’stable’ and ’unstable’ motion about
the Moon. Stable and unstable motion in this case are associated to whether
or not a spacecraft can, or cannot, respectively, perform a complete cycle
about the Moon.

A transfer to the Moon arriving in ballistic capture can be achieved by
arriving in weak capture, or equivalently at the WSB. It turned out that
the solution obtained in 1986 did utilize the dynamics near the invariant
manifolds associated with the Lyapunov orbits associated to the collinear
Lagrange points. The full solution to Conley’s conjecture was to find a
transfer arriving at the lunar WSB starting from an arbitrary distance from
the Earth instead of sufficiently far away. This was accomplished in 1991 with
the rescue of a Japanese lunar mission and getting it’s spacecraft, Hiten, to
the Moon with very little fuel on a new type of transfer. This solution utilized
a four-body problem between the Earth-Moon-Sun-spacecraft [1, 2]. The
manifold structure associated to the dynamics of that transfer was partially
uncovered in 1994 [1]. This was further explored in 2000 by G. Marsden, et
al [11]. Also, see the work by C. Circi and P. Teofilatto [8]. The type of
transfer that Hiten used promises to play an important role in future lunar
missions.

Up to recently, the nature of the weak stability boundary, and associated
dynamics, has not been well understood. One of the main results here is
to breifly describe recent work which sheds light on this problem. We will
consider the restricted three-body problem for the motion of a particle P3 of
zero mass in a gravitational field generated by two primary particles P1, P2 in
mutual circular motion, where the mass of P1 is much larger than the mass
of P2. We will assume for this report, that P1, P2 are the Earth, Moon, re-
spectively, while P3 is a spacecraft. Also, it is assumed that P3 is constrained
to move on the same plane as P1, P2. The motion of P3 is studied relative to
P2, and the weak stability boundary exists about P2.

We’ll first describe the orginal alogrithmic definiton of the weak stability
boundary in 1986 and then describe a new generalized definition and the
resulting visualizations obtained of this region. This provides a way to accu-
rately visualize this boundary for the first time. We will also mention how
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this work suggests a connection between the weak stability boundary and the
limit set obtained from the invariant manifolds associated to the Lyapunov
orbits about L1, L2 near P2. This connection is not yet understood and is
the focus of future work. The main references for these results are [6, 10, 12].

The WSB region is is not an invariant set, nor does it lie on individual en-
ergy levels which has made its study difficult. However, these results promise
to help better understand this region.

Restricted Three-Body Problem Model

The model we will use until further notice is the restricted three-body
problem mentioned in the Introduction between particles P1, P2, P3. This is
a model that provides a way to study dynamics in the three-body problem
where the problem has been simplified as much as possible and still preserves
the three-body interaction. Although this more simplified version of the
three-body problem is being used, it is found that the results obtained are
close to a more realistic three-body modeling. We view this problem in a
coordinate system x, y which rotates with the same velocity as P1, P2 about
their common center of mass cm. This is called a rotating coordinate system,
and in it, P1, P2 are fixed. For convenience, we put P1, P2 on the x-axis,
and the cm at the origin, where P1 is at (µ, 0) and P2 at (−1 + µ, 0), µ =
m2/(m1 +m2) ≈ m2/m1 ≈ .012, is the mass ratio of the Moon to the Earth,
m1, m2 are the mass of the Earth, Moon, respectively. In these units, the
mass of the Earth is 1 − µ and the mass of the Moon is µ. This coordinate
system is shown in Figure 1. The Lagrange points Lk, k = 1, 2, 3, 4, 5 are also
shown. The differential equations for the motion of P3 are given by,

ẍ− 2ẏ = x+ Ωx

ÿ + 2ẋ = y + Ωy,
(1)

where ˙≡ d
dt
,Ωx ≡ ∂Ω

∂x
,

Ω =
1 − µ

r1
+
µ

r2
,

r1 = distance of P3 to P1 = [(x − µ)2 + y2]
1

2 , and r2 = distance of P3 to

P2 = [(x+1−µ)2 + y2]
1

2 , see Figure 1. We note that the the coordinates are
scaled with no dimension. To obtain dimensional units, in kilometers(km)
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for distance, and seconds (s) for time, the dimensionless position (x, y) is
multiplied by the distance, d, in kilometers between P1 −P2 and the velocity
ẋ, ẏ is multiplied by the circular velocity, vc, in kilometers per second of
P2 about P1. For example if P1, P2 = Earth, Moon, respectively, then d =
386, 000km, vc = 1km/s.
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Figure 1: Rotating coordinate system and locations of the Lagrange points.

System (1) of differential equations has five equilibrium points, where
ẍ = ÿ = 0, and ẋ = ẏ = 0, which are the Lagrange points Lk, k = 1, 2, 3, 4, 5.
Placing P3 at any of these locations implies it will remain fixed at these
positions for all time. Three of these points are called collinear and lie on
the x-axis, and the two that lie off of the x-axis are called equilateral points.

The total energy of the system is called the Jacobi energy, J , which is a
function of (x, y, ẋ, ẏ). It is given by

J = −(ẋ2 + ẏ2) + (x2 + y2) + µ(1 − µ) + 2Ω. (2)

J is an integral of the motion of (1). Thus, for any solution ψ(t) = (x(t), y(t), ẋ(t), ẏ(t))
of (1), J(ψ(t)) = C = constant. C is called the Jacobi constant.

2. DETERMINATION OF THE WEAK STABILITY BOUND-

ARY
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The weak stability boundary region was first estimated in 1986 as a way
for spacecraft to be ballistically captured into orbit about the Moon, defined
where the Kepler energy, H2, with respect to the Moon, P2, is negative,

H2 =
1

2
v2
2 −

µ

r2
< 0, (3)

v2 is the magnitude of the velocity of P3 with respect to P2. This gives rise
to weak capture where P3 will remain captured about P2 for a finite time, t,
t1 ≤ t ≤ t2, and where H2 > 0 for t < t1, t > t2, i.e. where it escapes P2.

The estimation of this region was originally accomplished by a numerical
algorithm which measured when P3 was able to perform a complete cycle
about P2 with initial elliptic conditions on a radial line l centered at P2 and
returning to l. This was first done in 1986 [2] then more rigorously in [1].
More precisely, the initial conditions on l assume, therefore, that H2 < 0, or
equivalently, where the initial eccentricity e2 of P3 with respect to P2 satisfies
e2 < 1 at the initial time t = 0. A value of e2 ∈ [0, 1) is fixed. It is assumed
that the initial velocity vector on l is normal to the line, in the posigrade
direction, and that the initial state is at the periapsis of an osculating ellipse.
Thus,

v2 =

√

µ(1 + e2)

r2
. (4)

We assume l makes an angle θ2 ∈ [0, 2π] with the x−axis, indicated by l(θ2),
which is fixed. With a given initial state for P3 at t = 0, the differential
equations given by (1) are numerically integrated for t > 0.

If the trajectory for P3 in position space, α(t) = (x(t), y(t)), performs a full
cycle about P2 and returns to l with H2 < 0, then the motion is called stable.
If, on the other hand, P3 returns to l with H2 ≥ 0, or if α(t) moves away
from P2 and makes a full cycle about P1, then the motion is called unstable.
(See Figure 2.)

By iterating between stable and unstable motion, one finds a critical
distance r∗ on l with the property that for r2 < r∗ the motion is stable and
for r2 > r∗ the motion is unstable. Since r∗ depends on θ2 and e2, that are
held fixed during the iteration process, we obtain a functional relationship

r∗ = f(e2, θ2) (5)

which defines the weak stability boundary about P2, we label W.
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Figure 2: Stable and unstable motion after one cycle about P2.

The definition of the weak stability boundary given by W can be gen-
eralized to find a more accurate definition of this transition region. This is
because the transition distance given by (5) is not unique. This generaliza-
tion was given by Garcia and Gomez [10] and shows that the weak stability
boundary is much more complicated than originally thought. Their analysis
was studied by Topputo and Belbruno and additional refinements were ob-
tained [12]. Some of the results of these studies are summarized here and the
reader can find many more details in these papers.

It was found that for a given value of θ2 and e2, there are a countable number
of open intervals, Ik = (r∗2k−1, r

∗
2k), k = 1, 2, 3, ..., r∗1 = 0, containing stable

points along l and that the points defining the transition between stable
and unstable motion, which define the weak stability boundary, lie at the
boundaries of these open intervals. The stable set of points, U1(e2, θ2), is
therefore given by,

U1(e2, θ2) =
⋃

k≥1

Ik. (6)

The more general definition of the weak stability boundary as e2, θ2 vary is
given by the set of boundary points of this set, except r∗1. We label this

W1 = ∂
⋃

e2∈[0,1),θ2∈[0,2π]

U1(e2, θ2), (7)

where, for a set A, ∂A represents the boundary of A.
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Equation 7 yields a definition of the weak stability boundary when study-
ing trajectories that make one cycle about P2. We refer to this as the weak
stability boundary of order one. Analogously, U1 is referred to as a set where
the points are 1-stable. More generally, a similar definition can be made
after analyzing n cycles about P2 before returning to l, n = 1, 2, 3, .... Thus,
the weak stability boundary of order n = 1, 2, 3, ..., relative to n cycles of P3

about P2, is given by

Wn = ∂
⋃

e2∈[0,1),θ2∈[0,2π]

Un(e2, θ2), (8)

where Un consists of points that we refer to as n-stable,

Un =
⋃

k≥1

Ik (9)

Summarizing, the weak stability boundary of order n, denoted by Wn is the
locus of all points r∗(e2, θ2) along the radial segment l(θ2) for which there is
a change of stability of the initial trajectory α(t), that is, r∗(e2, θ2) is one of
the endpoints of an interval Ik = (r∗2k−1, r

∗
2k) characterized by the fact that

for all r ∈ Ik the motion is n-stable and there exist r′ 6∈ Ik, arbitrarily close
to either r∗2k−1 or r∗2k for which the the motion is n-unstable. Thus

Wn = {r∗(e2, θ2) | e2 ∈ [0, 1), θ2 ∈ [0, 2π]}.

We can define a subset of the weak stability boundary of order n, Wn(e2),
obtained by fixing the eccentricity of the osculating ellipse,

Wn(e2) = {r∗(e2, θ2) | θ2 ∈ [0, 2π]}. (10)

The sets Wn, Un are graphically determined in [10, 12] for many different
parameter values. This takes a substantial amount of numerical work and
the details can be found in these papers. For the sake of brevity just two
figures are displayed from [12]. Figure 3 shows the weak stability boundary
of order 1 for the case e2 = 0 as the boundary of the set U1 of 1-stable points.
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Figure 3: The open set U1 of 1-stable points for the case e2 = 0 with boundary
W1(0) centered at P2. Multiple components of the boundary are shown.

Multiple components are shown indicating a complicated structure. Figure
4 shows the sets Un with respective boundaries Wn, n = 1, ..., 6 for e2 = 0.
These sets become more sparse as n increases.

Results in [12] show that the size of the sets Un, and hence Wn, reduce
in size as e2 → 1. It is also seen that these sets exist for a certain range of
the Jacobi constant.

Preliminary results obtained in [12] indicate that the weak stability bound-
ary of order n is related to the invariant manifold structure associated with
the limit sets of the stable manifolds associated to the Lyapunov orbits near
L1, L2 for a specific range of Jacobi constant. This is currently being studied
by F. Topputo, M. Gidea and this author. Figure 5 shows trajectories with
initial conditions on W1(0) which in forward time move near to the stable
manifold on the Lyapunov orbit about L1.
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Figure 4: n-stable sets and nth order weak stability boundaries for e2 = 0,
n = 1, ..., 6.
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Figure 5: Trajectories with initial conditions on W1(0) for θ2 ∈ [−π/4, π/4]
moving close to the stable manifold of the Lyapunov orbit about L1
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